

Triage of endangered species assessment work to effectively support decision making

Ashley B.C. Goode^{1,4}, Conor P. McGowan^{1,2}, Erin Rivenbark³ ¹Dept. of Wildlife Ecology and Conservation, University of Florida ²USGS Florida Co-op Unit ³US Fish and Wildlife Service ⁴Curent affiliation: Florida Fish and Wildlife Conservation Commission

Ashley.Goode@myfwc.com

Triage of endangered species assessments

SSAs & the need for optimization

Using Excel Solver

Current and future applications

Species Status Assessments

Important decision-making documents

- Required for Endangered Species Act listing decisions
- Can be quantitative or qualitative based on available data

Require data

- Populations, demographics, and habitat
- Threats
- Taxonomy

Require time and expertise

- ~1 year
- Affected by controversy issues
- Limited by workforce capacity and expertise

Previous Triage Efforts

Immediate backlog when SSAs were introduced

Bin method – based on whether there was available data at the time the species was added to the assessment list

Still the primary method for triage

A need for an optimized plan

More species being added to assessment list every year

Litigation and court-ordered assessments

Scheduling based on a rational tool and available data

Developing an Optimization Tool

Must be flexible

- Add/remove species
- Change objective priorities
- Test scenarios

Must be easy to use

- Will be used by many people
- Output must be understandable

Must address many issues

- Variability among species (range, habitat, data available, etc)
- Clear objectives
- Uncertainty in the workforce/workload
- Visibility/controversy

Outlining of Objectives

<u>Problem</u>: Species to be assessed need to be prioritized so that they can be funded in a timely manner and assigned to field offices based on their staffing and expertise capacity.

Identified metrics

- Reflected the problem
- Measurable
- Accessible

Developing a Value Function

Determine priority of metrics

Court-ordered deadlines are #1 Research must be completed before assessment can be done.

Constraints

Strict – Capacity Flexible – Impacts on published workplans

How should time contribute to value?

Deviation from currently assigned Workplan Year
Taxonomy accepted
Controversial species
Population data
Habitat data

Developing a Value Function

Components gain or lose value based on how soon or late they are assigned. Weights make it easy to add value to priority components.

Кеу:
Metric Weight
Difference between workplan year and selected year
Value of Metric

- Value = (Schedule Weight * Δ Year * Schedule Value)
 - + (Taxonomy Weight * Δ Year * Taxonomy Value)
 - + (Controversy Weight * Δ Year * Controversy Value)
 - + (Population Data Weight * Δ Year * Population Data Value)
 - + (Habitat Data Weight * **A Year** * Habitat Data Value)

Using Excel Solver to optimize value

What is Solver? A model optimizer add-in for Microsoft Excel

What types of problems can Solver solve?

- "What-if analysis"
- Linear programming/linear optimization problems
 - "the optimization of a linear objective function, subject to linear equality/inequality constraints"
- Warehouse, stock, conservation planning, "travelling salesman"

Creating a Solver Model

Creating a Solver Model

Solver Data Tab

	А	В	С	
1	Species	Year	Value	
2	Elimia acuta	2026	2.425641	Species Awaiting Assessment
3	Graptemys pulchra	2025	0.615385	
4	Elliptio arca	2027	-6.5641	Value function results
5	Lampropeltis meansi	2025	0.615385	
6	Percina sipsi	2025	0.365385	
7	Procambarus delicatus	2030	-5.94359	Decision variable cells -
8	Eriocaulon nigrobracteatum	2030	-1.75	
9	Osmia calaminthae	2030	C	
10	Lobelia boykinii	2030	0.523077	Year selected by Solver mode
11	Faxonius hathawayi blacki	2030	-16	
97	Amphinemura mockfordi	2027	0.175641	
98	Isoetes microvela	2025	-0.28846	
99	Gomphus westfalli	2030	-0.87692	Constraints
100	Linum carteri var. smallii	2025	1.415385	Constraints
101	Sporobolus teretifolius	2030	4.133333	
102	Procambarus lucifugus lucifugus	2026	8.692308	Method/Engine
103	Stylurus potulentus	2028	0.502564	/ 5
104				
105			-110.809	

Solver Model Dialog Box

lver Para	ameters				_
Se <u>t</u> Ob	ojective:		\$C\$105		Ť
То:	• <u>M</u> ax	◯ Mi <u>n</u>	◯ <u>V</u> alue Of:	0	
<u>B</u> y Cha \$B\$2:\$	anging Variable Cell \$B\$103	ls:			<u>↑</u>
S <u>u</u> bjec	ct to the Constraints				
\$B\$2:5 \$B\$2:5	\$B\$103 <= 2030 \$B\$103 = integer				<u>A</u> dd
\$G\$3:	\$G\$8 <= 22				<u>C</u> hange
\$0\$5.	\$G\$0 >= 1				<u>D</u> elete
					<u>R</u> eset All
				<u> </u>	Load/Save
S <u>e</u> lect Metho	a Solving E	volutionary		~	Options
Solvi Selec for li	ing Method ct the GRG Nonline: near Solver Probler	ar engine for Solv ns, and select the	er Problems that are sn Evolutionary engine for	nooth nonlinear. Select t Solver problems that a	he LP Simplex engine re non-smooth.
	<u>H</u> elp		[<u>S</u> olve	Cl <u>o</u> se

Solver Output and SSA Scheduling

List of species assessments to be completed by year and state

Identifies some flexibilities

- Gives decision makers options
- Indicates value of each scenario

Comparison of objective values as value of information

- Compare scenarios
- Rank schedules under each scenario

Current Applications

Discussions on field office capacity

Future workforce planning

- Manpower
- Expertise

Training

SSA assignment distribution

- Movement of assignments to other FOs
- Combining species into portfolio assessments

Current need and future extensions

Optimize based on field office capacity

Test scenarios

Use for other workload problems

UF FLORIDA

Lab group at UF - Kaili Gregory, Francesca Erickson, Riley Andrade FWS - Jessica Gilbert, Nicole Rankin

FWC-FWRI

Thank you!